La semana que ahora se cierra ha sido pródiga en la divulgación de nuevos hallazgos científicos que confirman que las células madre adultas son la gran promesa de la emergente medicina regenerativa, en contraste con la completa inutilidad de las células embrionarias, a las que, con todo, el Gobierno de España ha seguido dedicando este año importantes subvenciones económicas. Además, la Administración española está dando la espalda a determinados convenios internacionales sobre bioética y a la trascendental sentencia del Tribunal de la UE (caso Brüstle v. Greenpeace), cuya protección de los embriones humanos es inequívoca.

Estos esperanzadores hallazgos científicos han tenido amplia difusión gracias al espacio que les ha venido dedicando el influyente diario El País, paradójicamente un medio con una posición militante a favor de la experimentación con embriones humanos y que habitualmente ha tratado de ridiculizar las críticas a esta línea de investigación realizadas por los defensores de la vida humana.

Científicos de Israel plantean una alternativa al polémico uso de embriones

La primera noticia saltaba a las páginas del citado diario el pasado día 19 de septiembre con el expresivo titular «Una fuente inagotable de células madre para la medicina. Científicos de Israel plantean una alternativa al polémico uso de embriones».

El Pais informaba que científicos de Israel han descubierto una fuente inagotable de células madre para la medicina en los tejidos de los propios pacientes. «Una de las grandes trabas para la aplicación clínica de las células madre iPS, las estrellas emergentes de la medicina regenerativa, es la ineficacia de su obtención a partir de células de la piel: solo una minúscula fracción de éstas, menos del 1%, logra retrasar su reloj para recuperar su primitiva condición de células madre, y por tanto su capacidad para regenerar cualquier tejido y órgano del cuerpo. El nuevo trabajo identifica una forma de superar esa barrera y llevar la eficacia hasta casi el 100%.

La tecnología de las células madre iPS, o de pluripotencia inducida, se ha desarrollado en los últimos años como una salida a los «conflictos éticos, políticos y religiosos» que suscitaron en la década anterior las células madre embrionarias. Mientras que estas últimas requieren la destrucción de embriones humanos de dos semanas, las células iPS proceden de la reprogramación de simples células de la piel de un paciente. Esto no solo evita el uso de embriones, sino que produce un material genéticamente idéntico al paciente en cuestión, lo que evitará el rechazo en caso de serle trasplantado.

Jacob Hanna y sus colegas del Instituto Weizmann en Rehovot, Israel, han logrado ahora identificar lo que parece ser el principal impedimento para una conversión eficaz de las células adultas en células iPS. Se trata de un gen conservado en los mamíferos, llamado Mbd3. Hanna muestra en la revista Nature que la inactivación de ese gen, unida al procedimiento convencional de retrasar el reloj celular, permite a las células adultas —ya sean de ratón o de humano— convertirse en células iPS con una eficacia cercana al 100%. No solo funciona con la piel, sino también con otros tipos de tejido, lo que también incrementa las posibles fuentes de material para el futuro.

La técnica de reprogramación ideada por el investigador japonés Shinya Yamanaka —que recibió por ello el último premio Nobel de Medicina— sorprendió a la comunidad científica por su gran simplicidad. Solo requiere tratar las células de la piel con cuatro factores de transcripción, o genes que regulan a otros genes. La otra cara de la moneda es que esas células adultas son muy resistentes a abandonar su naturaleza diferenciada, dedicada a las peculiaridades del oficio de ser piel, y recuperar su primitiva condición pluripotente, capaz de convertirse en cualquier otro tipo celular.

Los fibroblastos, o células que van regenerando la piel, se convierten en células madre iPS con menos de 1% de eficiencia. Esta ineficacia “está obstaculizando la generación de diversos tipos celulares para la investigación y la medicina”, según reconocen en Nature los biólogos del desarrollo Kyle Loh, de la Universidad de Stanford, y Bing Lim, del Instituto del Genoma de Singapur. Este es el obstáculo que pretende despejar el trabajo de los científicos del Instituto Weizmann.

Casi todas las células del cuerpo tienen el mismo genoma, una copia del genoma humano que han heredado del cigoto, la célula formada por fusión de un óvulo y un espermatozoide. Que una célula de la piel sea distinta de una del hígado o de una neurona se debe a que cada una tiene activos distintos factores de transcripción, o genes que regulan a otros genes. Esta organización jerárquica de la regulación genética permite a unos pocos factores de transcripción regular grandes redes de genes subordinados, y en el fondo es la razón de que funcione la técnica de Yamanaka: que solo cuatro factores de transcripción, llamados Oct4, Sox2, Klf4 y Myc, basten para reprogramar células de la piel como células madre. Pero ¿por qué la eficacia es tan baja?

Los científicos han hallado ahora que los propios reprogramadores Oct4, Sox2, Klf4 y Myc, los llamados factores de Yamanaka en el mundillo, reclutan a su servicio a un gen represor, llamado Mbd3, que se dedica a reprimir a los mismos genes inmaduros que ellos están intentando activar. Y que basta inactivar a ese represor Mbd3 para que la balanza se desequilibre y la eficacia de la reprogramación ascienda al 100%. En este tipo de trabalenguas viven sumidos los genetistas».

Vía libre para probar el pacientes células madre contra el párkinson

Hoy El País vuelve de nuevo sobre el tema con una nueva noticia al dar cuenta de un experimento japonés con macacos que descarta el rechazo inmunológico de las células madre en su trasplante al cerebro. La prueba se ensayará en humanos en dos años y permite abrigar esperanzas para un tratamiento eficaz del párkinson.

«La gran promesa de la emergente medicina regenerativa -explica El País-  es convertir las células madre derivadas de un paciente en tejidos que se le puedan trasplantar para tratar su enfermedad. La idea supera hoy una prueba crucial con la demostración, por científicos japoneses, de que las neuronas dopaminérgicas –cuya destrucción causa el párkinson— derivadas de células madre pueden trasplantarse al cerebro de los primates sin apenas rechazo inmunológico. Esto despeja el camino hasta el punto de que los ensayos clínicos con pacientes humanos de párkinson empezarán en dos años, según el responsable de la investigación.

“Nosotros, y también otros laboratorios en Estados Unidos y Europa, estamos proyectando un ensayo clínico con pacientes de párkinson”, dice a El País Jun Takahashi, investigador principal del Centro para la Investigación y Aplicación de las Células iPS, en Kioto. “Calculo que el ensayo empezará en un par de años”. Takahashi es el coordinador del trabajo presentado en Stem Cell Reports. Otro de los firmantes es su jefe en Kioto, Shinya Yamanaka, último premio Nobel de Medicina por el descubrimiento de las células iPS,

Las células iPS (induced pluripotent stem cells, o células madre de pluripotencia inducida) son la gran promesa de la investigación biomédica. Son unas células madre tan versátiles como las embrionarias -capaces de convertirse en cualquier tejido y órgano del cuerpo-, pero que se obtienen reprogramando, o retrasando el reloj de simples células de la piel u otro tejido del paciente. No solo eluden el uso de embriones humanos, sino que además son genéticamente idénticas al paciente. Los trasplantes derivados de ellas no deberían, por tanto, generar rechazo inmunológico.

Pero las predicciones más razonables fallan a menudo en biología. En los últimos dos años, algunos experimentos con ratones habían arrojado un jarro de agua helada sobre esas expectativas. Varios tipos de trasplantes derivados de células madre iPS indujeron una fuerte respuesta inmunológica en el ratón receptor, pese a que el trasplante procedía de un ratón genéticamente idéntico a él. Por alguna razón que sigue sin estar del todo clara, las células iPS parecen generar rechazo en esos sufridos roedores de laboratorio.

Takahashi, Yamanaka y sus colegas muestran ahora que, pese a todas esas prevenciones, el proceso funciona en primates no humanos. Han utilizado ocho macacos (Macaca fascicularis) criados para este propósito, les han extraído unas pocas células de la piel o de la sangre y les han retrasado el reloj para convertirlas en células madre iPS. Esta es la receta por la que Yamanaka ganó el Nobel, basada en solo cuatro factores de transcripción, o genes que regulan a otros genes.

Después han usado un protocolo –a base de factores de diferenciación y otras moléculas con actividad biológica— que, paso a paso, va convirtiendo (o diferenciando, en la jerga) a las células madre iPS primero en precursores de las neuronas, luego en neuronas y por último en neuronas dopaminérgicas, esto es, productoras del neurotransmisor dopamina. La destrucción de este tipo de neuronas en una parte del cerebro (la sustancia negra), y el consiguiente déficit de dopamina en los circuitos cerebrales normalmente alimentados por ellas, es la causa directa del párkinson.

Los científicos japoneses han trasplantado esas neuronas a los mismos ocho macacos de los que habían partido, pero en dos tipos de condiciones: trasplantes autólogos (al mismo mono del que provenían las células iPS) o heterólogos (a otro mono distinto). El trabajo está diseñado cuidadosamente para examinar la cuestión crucial del rechazo. Y el resultado es un fuerte rechazo inmunológico en los trasplantes heterólogos; y uno muy débil en los trasplantes autólogos. Es la mejor noticia que podía esperar el sector –y el Nobel Yamanaka— tras el último año de depresión por los experimentos con ratones.

El experimento no aborda si las neuronas dopaminérgicas trasplantadas a los macacos pueden o no aliviar los síntomas del párkinson: los monos no tenían párkinson y no había por tanto nada que aliviar. Lo que sí es específico del párkinson es el tipo de neuronas producidas y el lugar del cerebro en el que deberían ser trasplantadas si los pacientes fueran humanos. Los autores han utilizado seis inyecciones en el cuerpo estriado izquierdo del cerebro, cada una con 800.000 neuronas.

Takahashi considera que sus resultados ofrecen “una lógica para empezar a probar los trasplantes autólogos en situaciones clínicas, al menos con células neuronales”. También piensa que el trasplante de neuronas derivadas de células iPS al mismo paciente del que fueron obtenidas, o incluso a otro paciente que case con él inmunológicamente –como se hace ahora con los trasplantes de médula— puede ser posible sin necesidad de utilizar fármacos inmunosupresores. La respuesta inmunológica no es nula, pero sí lo bastante baja para que las células trasplantadas sobrevivan a largo plazo.

Los científicos esperan que las células madre sirvan también algún día para tratar la diabetes, la artritis, las dolencias cardiacas, las lesiones medulares y muchas otras enfermedades hoy incurables. El párkinson, sin embargo, parece ir en cabeza por el momento».

Leer en El País la noticia «Una fuente inagotable de células madre para la medicina» (19/09/2013).

Leer en El País la noticia «Vía libre para probar en pacientes células madre contra el párkinson» (26/09/2013).

(Imagen: Reuters / Cordon Press, reproducida por El País 26/09/2013).